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La correction de la tokenisation de Java Card

Résumé : Nous présentons une formalisation de l'optimisation de bytecode du langage Java Card de Sun
qui est réalisé par une transformation du format �class �le� au format �CAP �le�, La formalisation s'exprime
comme un ensemble de contraintes entre les deux formats. Le bytecode de Java Card est formalisé comme une
sémantique opérationnelle abstraite, qui peut alors être instanciées dans les deux formats. L'optimisation est
donnée comme une relation logique telle que les sémantiques instanciées sont observablement égales.

Mots-clé : Java Card, bytecode, optimisation, relations logiques, ra�nement de données



Correctness of Java Card Tokenisation 3

The Java Card language [Sun97] is a trimmed down dialect of Java aimed at programming smart cards.
As with Java, Java Card is compiled into bytecode, which is then veri�ed and executed on a virtual machine
[LY97], installed on a chip on the card itself. However, the memory and processor limitations of smart cards
necessitate a further stage, in which the bytecode is optimised from the standard class �le format of Java, to
the CAP �le format [Sun99]. The core of this optimisation is a tokenisation in which names are replaced with
tokens enabling a more direct lookup of various entities.

We describe a semantic framework for proving the correctness of Java Card tokenisation. The basic idea
is to give an abstract description of the constraints given in the o�cial speci�cation of the tokenisation and
show that any transformation satisfying these constraints is `correct'. This is independent of showing that there
actually exists a collection of functions satisfying these constraints. This report concentrates on proving the
correctness of the speci�cation. The formal development of an algorithm will be the subject of another report.

The main advantage of decoupling `correctness' into two steps is that we get a more general result. Rather
than proving the correctness of one particular algorithm, we are able to show that the constraints described in
Sun's o�cial speci�cation [Sun99] (given certain assumptions) are su�cient. Moreover, the technique used to
develop an algorithm is orthogonal to this proof.

1 The Conversion

We give a brief sketch of the transformation process. We assume that the reader has a basic understanding of
the various elements of the Java Virtual Machine and class �le format.

Java source code is compiled on a class by class basis into the class �le format. By contrast, Java Card
CAP �les correspond to packages. They are produced by the conversion of a collection of class �les. In fact,
the conversion process also takes a number of export �les as input, but we will ignore these here. Indeed, this
is just one of several simplifying assumptions we make.

The `transformation' is presented in [Sun99] as a collection of constraints on the CAP �le, rather than as
an explicit correspondence between class and CAP formats. Instead, we adopt a simpli�ed de�nition of the
transformation, only considering classes, constant pools, �elds and methods. In particular, we ignore exceptions
and interfaces.

In the class �le format, methods, �elds and so on are referred to using a certain naming convention. In CAP
�les, instead, tokens are ascribed to the various entities. The idea is that if a method, say, is publically visible1,
then it is ascribed a token. If the method is only visible within its package, then it is referred to directly using
an o�set into the relevant data structure. Thus references are either internal or external. In addition, `top-level'
references, to packages (and applets) are made using application identi�ers (AIDs).

CAP �les consist of a number of components, of which we will consider the constant pool, class, method,
static �eld and descriptor components. One signi�cant di�erence between the two formats is the way in which
the method tables are arranged. In a class �le, the methods item contains all the information relevant to methods
de�ned in that class. In the CAP �le, this information is shared between the class and method components.
The method component contains the implementation details (i.e. the bytecode) for the methods de�ned in this
package. The class component is a collection of class information structures. Each of these contains separate
tables for the package and public methods, mapping tokens to o�sets into the method component. The method
tables contain the information necessary for resolving any method call in that class. If a class inherits a method
from a superclass then it may be that the method token is included in the relevant table, or that the table of the
superclass should be searched. There is a choice, therefore, between copying all inherited methods, or having a
more compressed table. The speci�cation does not constrain this choice.

Another optimisation concerns method references. These are tagged to indicate whether they correspond to
the call of a `supermethod', that is, the method of a superclass. This comes from using the super keyword in
the source code (thus avoiding overriding). Retaining this information in the bytecode allows a more e�cient
location of the information in the tables.

What we have described are those aspects concerned with the rearrangement into CAP format. There are
also a number of mandatory optimisations such as the inlining of �nal �elds, and the type-based specialisation
of instructions. The order of these stages is not speci�ed. Indeed, a converter is at liberty to implement further
optimisations.

Most of the work in the proof lies in the various de�nitions: de�ning the semantics of the virtual machine
independently of the underlying format, and formalising the main stages of the transformation. Given this

1We follow the terminology of [Sun99], where a method is public visible if it has either a protected or a public modi�er, and
package visible if it is declared private or has no visibility modi�er.
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4 Ewen Denney

framework, the proof, as such, is relatively small. It is natural when proving correctness to consider all the
transformation steps simultaneously. The modularity is in the de�nition. Thus, by �Java card tokenisation� we
mean both the assignment of tokens to the various named items, and the rearrangement in the CAP �le format.
We also take the compression of method tables into account.

There is a more detailed discussion of the di�erences between Java and Java Card in the o�cial documen-
tation [Sun97, Sun99].

2 Related Work

There have been a number of formalisations of the Java Virtual Machine which have some relevance for our
work here on Java Card. Bertelsen [Ber97] gives an operational semantics which we have used as a starting
point. He also considers the veri�cation conditions, which considerably complicates the rules, however. Börger
and Schulte [BS98] have a di�erent approach, though also make use of auxiliary functions to a certain extent.
Pusch has formalised the JVM in HOL [Pus98]. Like us, she considers the class �le to be well-formed so that the
hypotheses of rules are just assignments. The operational semantics is presented directly as a formalisation in
HOL, whereas we have chosen (equivalently) to use inference rules. All these works make various simpli�cations
and abstractions. However, since these are formalisations of Java rather than Java Card they do not consider
the CAP �le format.

In contrast, the work of Lanet and Requet [LR98] is speci�cally concerned with Java Card. They also
aim to prove the correctness of Java Card tokenisation. Their work can be seen as complementing ours.
They concentrate on optimisations, including the type specialisation of instructions, and do not consider the
conversion as such. In contrast, this is an aspect which we have ignored completely but have, however, speci�ed
the conversion. Their formalism is based on the B method, so the speci�cation and proof are presented as a
series of re�nements.

In [Pus96], Pusch proves the correctness of an implementation of Prolog on an abstract machine, the WAM.
The proof structure is similar to ours, although there are re�nements through several levels. There are op-
erational semantics for each level, and correctness in expressed in terms of equivalence between levels. The
di�erences between the semantics are signi�cant, since they are not factored out into auxiliary functions as
here. She uses a big-step operational semantics, which is not appropriate for us because we wish to compare
intermediate states. Moreover, she uses an abstraction function on the initial state, the results being required
to be identical, whereas we have a relation for both initial and �nal states.

3 Overview of Formalisation

We will present the transformation from class �le to CAP �le as a transformation of virtual machines, that is,
from the JVM to the JCVM. Since Java Card is a sublanguage of Java it can be executed on a JVM, although
the intention is that the conversion is an integral part of the compilation process, and that only the CAP �le is
executed.

The �rst issue to be addressed is determining in what sense, exactly, the conversion to token format should
be regarded as an equivalence. We cannot, for example, simply say that the JVM and JCVM have the same
behaviour for all bytecodes, in class and CAP �le format respectively, because, a priori, the states of the virtual
machines are themselves in di�erent formats.

We adopt a simple form of equivalence based on the notion of representation independence [Mit96]. This is
expressed in terms of so-called observable types. This limits us to comparing the two interpretations in terms
of words (there are no double words in Java Card), but this is su�cient to observe the operand stack and local
variables.

Representation independence may be proven by de�ning coupling relations between the two formats, which
respect the tokenisation and are the identity at observable types. This can be seen as formalising a data
re�nement from class to CAP �les.

We formalise the relations nondeterministically as any family of relations which satis�es certain constraints,
rather than as explicit transformations. This is because there are many possible tokenisations and we wish to
prove any reasonable optimisation correct. Formally, we say that a function is representation independent if it
maps related inputs to related outputs. This is the de�nition of a logical relation at function types.

We follow numerous researchers in this area and formalise the virtual machines in an operational style,
as transition relations over abstract machines. We adopt the action semantics formalism of Mosses [Mos98].

INRIA



Correctness of Java Card Tokenisation 5

This is convenient as by presenting the bytecode semantics in a modular manner we can more easily make the
comparison between the two formats where signi�cant. We prove the correctness of tokenisation with respect
to these semantics. However, the particular formalisation of the semantics is orthogonal to the technique used
for proving equivalence. The main point is to give a set of operational rules which can be used for both virtual
machines, with all the semantic di�erences abstracted out into a number of auxiliary functions.

The semantics is given in a mixture of operational and denotational styles. We formalise the JCVM opera-
tionally, parameterised with respect to a number of auxiliary functions which are then interpreted denotationally.

To illustrate how it is natural to conceive the operational semantics independently of certain auxiliary
functions, we consider dynamic method lookup, used in the semantics of the method invocation instructions.
The lookup function which searches for the implementation of a method is dependent on the layout of the
method tables. There are also a number of choices for how it is a�ected by method modi�ers, each of which is
apparently consistent with the o�cial speci�cation. The operational rules giving the semantics of the method
invocation instructions, presented in Section 5.1, are parameterised with respect to the lookup function. Then
in Sections 6 and 7 two possible interpretations of lookup (and the other auxiliary functions) are given. A
further choice would be to give an abstract interpretation to the auxiliary functions or, going in the opposite
direction, to include error information. For example, if the bytecode is not assumed to be veri�ed, the lookup
function could return NoSuchMethodError or IllegalAccessError.

Although the equivalence of dynamic method lookup could be regarded as the aim of the proof, in fact
`correctness' is distributed throughout all of the transformation and equivalence of lookup uses equivalence of
the transformation of classes, and so on.

The operational semantics, together with the interpretations of the auxiliary functions, induces an `interpre-
tation' of the bytecode, and it is in terms of this that we compare the two formats. In this spirit, we will use
`name interpretation' and `token interpretation' to refer to the semantics of the JVM and JCVM respectively.

Hence we consider the tokenisation to be correct if we can give a family of coupling relations which respects
the tokenisation, and which is the identity on observable types. We set this as the goal of the proof. Here we will
just be concerned with the correctness of the tokenisation and conversion to CAP format, and not any inlining
or further optimisation that might take place.

We give types to the various entities converted during tokenisation, such as Class_ref and Constant_pool.
We include a type, Bytecode, since the bytecode itself changes during tokenisation. This is due, amongst other
reasons, to the presence of constant pool indices as arguments to instructions.

Let us write [[:]]name for the name interpretation (class format), and [[:]]tok for the token interpretation (CAP
format). We interpret both types and auxiliary functions. For example

[[Method_ref]]name = Class_name� Method_name� Type

[[Method_ref]]tok = Class_ref� Method_token

The lookup function

lookup : Class_ref� Method_ref! Class_ref� Bytecode

is interpreted, in turn, as the two functions de�ned below. Then for each type, �, we de�ne a relation R� �
[[�]]name � [[�]]tok

One technical problem is that some types are most naturally considered as being local to a certain context, or
dependent on another type. For example, class references in the token interpretation can either be external to a
package or internal. In the second case, they are given as an o�set which does not make sense out of the package.
Thus RClass_ref must relate class names to both internal and external token references. Another example is
that constant pool indices in the bytecode are assumed to have a label indicating the relevant constant pool
(whereas, in reality, this is evident from the context.) We can get round this by assuming that data is paired
with something to indicate its context whenever necessary. A more elegant approach would use dependent
types.

We start from the observation that not all instructions use the heap or the environment. It is these which
are sensitive to the alterations in the layout of the constant pool and class hierarchy, which take place during
tokenisation. Thus we will ignore the instructions concerned with immediate operations, stack manipulation,
local variables, and branching.2

2In fact, we will not consider the array access instructions either, one of which (aastore) accesses the environment, but we could
easily make this extension.
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6 Ewen Denney

Secondly, since the bytecode is assumed to have been veri�ed (and is not self-modifying), we can regard it
as having been assembled into an abstract syntax. This simpli�es the presentation and lets us abstract away
from details of program counters and use a form of structural operational semantics. We will not consider jump
instructions here, so need only consider one instruction at a time.3

The operational semantics is given in terms of con�gurations of abstract syntax and labelled arrows. We
regard con�gurations themselves as a form of instruction; in e�ect, a closure. Any changes to the heap or
environment are given implicitly in the arrow rather than being explicitly part of the con�guration. This
a�ords some modularity for then the semantics of those instructions which do not use the heap or environment
can be given as such and then extended verbatim.

In Section 4, we de�ne abstract types which are common to the two formats. It is this type structure which
is used to de�ne the logical relations. In Section 5 we give an operational semantics which is independent of the
underlying class/CAP �le format. The structure of the class/CAP �le need not be visible to the operational
semantics. We need only be able to extract certain data corresponding to a particular method, such as the
appropriate constant pool, so de�ne auxiliary functions for accessing such data.

In Sections 6 and 7, we give the speci�c details of the name and token formats, respectively, de�ned as
interpretations of types and auxiliary functions, [[:]]name and [[:]]tok .

In Section 8, we de�ne the logical relation, fR�g�2Abstract_type. It is convenient to informally group the
de�nition into several levels. First of all, there are various basic types (byte, short, etc.), , for which we have
R = id . Then there are the references, �, such as package and class references, for which the relation R�

represents the tokenisation of named items.
The constraints on the componentisation are expressed in R�, where � includes method information struc-

tures, constant pools, and so on. This represents the relationship between components in CAP �les and the
corresponding entities in class �les.

Using the above three families of relations we can de�ne R� for each type, �, where

� ::=  j � j � j � � �0 j � ! �0 j � + �0 j ��

The family of relations, fR�g� 2 Type, represents the overall construction of components in the CAP �le
format from a class �le. The relations are `logical' in sense that the de�nitions for de�ned types follows
automatically. For example, we de�ne the type of the environment and heap as

Environment= Package_ref! Package

Heap = Object_ref! Object

and so the de�nition of REnvironment follows from those of RPackage_ref, RPackage and the (standard4) construction
of R_!_; similarly for RHeap. In Section 9, we use this semantic format to prove the correctness. The proof
has two parts:

1. We prove that all auxiliary functions are representation independent; that is, if f : � ! �0 then we have
[[f ]]name R�!�0 [[f ]]tok.

2. Then, it is straightforward to prove that all instructions are representation independent, using part 1. It
is convenient to view the operational semantics of bytecode as giving an interpretation

[[code]] : State! Bytecode� State

where
State = Global_state� Local_state

Global_state = Environment� Heap

Local_state = Operand_stack� Local_variables� Class_ref

We can conclude, therefore, that if a transformation satis�es certain constraints (formally expressed by saying
that it is contained in R) then it is correct, in the sense that no di�erence can be observed in the two semantics.

Finally, we make some concluding remarks in Section 10.

3Actually, jumps should not present a problem. We could add labels to the abstract syntax, and keep the code as a component
of the global state. An auxiliary function would search for the label and evaluation would proceed from that point onwards.

4It is simpler to allow functions to be partial.
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Correctness of Java Card Tokenisation 7

4 Abstract Types

We use types to structure the transformation. These are not the types of the Java Card language, but rather
are based on the simply-typed lambda calculus with sums, products and lists. We use record types with the
actual types of �elds (drawn from the o�cial speci�cation where not too confusing) serving as labels. We write
elements of sum types in the form htag; valuei. Occasionally we use terms as singleton types, such as OxFFFF
and 0. We use a set-theoretic notation where convenient.

There are two sorts of types: abstract and concrete. The idea is that abstract types are those we can
think of independently of a particular format. The concrete types are the particular realisations of these, as
well as types which only make sense in one particular model. For example, CP_index is the abstract type
of indices into a constant pool for a given package. In the name interpretation, this is modelled by a class
name and an index into the constant pool of the corresponding class �le, i.e. Class_name � Index where
Index is a concrete type. In the token format, however, since all the constant pools are merged, we have
[[CP_index]]tok = Package_tok� Index. Another example is the various distinctions that are made between
method and �eld references in CAP �les, but not class �les, and which are not relevant at the level of the
operational semantics, which concerns terms of abstract types.

We arrange the types so that as much as possible is common between the two formats. For example, it is
more convenient to uniformly de�ne environments as mappings of type Package_ref! Package, with Package

interpreted as Class_name! Class_file or CAP_file.
There is a `type of types' for the two forms of data type in Java Card � primitive types, the simple types

supported directly on the card, and reference types.

Type = fBoolean; Byte; Shortg+ Reference_type

We have not included Int, which is optional.

Reference_type = Array_type+ Class_ref

We use a separate type, Object_ref, to refer to objects on the heap. The objects themselves contain a reference
to the appropriate class or array of which they form an instance.

The type Word is a platform speci�c abstract unit of storage. All we need know is that object references and
the basic types, Byte, Short and Boolean, can be stored in a Word. Rather than use an explicit coercion, we
assume

Word = Object_ref+ Null+ Boolean+ Byte+ Short

Thus a word is (i.e. represents) either a reference (possibly null) or an element of a primitive type. Furthermore,
we de�ne

Value = Word

Although this is not strictly necessary, there is a conceptual distinction. If we were to introduce values of type
Int, then a value could be either a word or a double word.

There are several forms of reference5:

Package_ref j Class_ref j Field_ref j Method_ref j Interface_method_ref

We distinguish Package from Package_ref, and similarly for the other items. Note that a reference is a
composite entity which can be context dependent (eg. a class reference can be in internal or external forms).
We assume, however, that su�cient information is given so that references make sense globally. For example,
class names are fully quali�ed, and class tokens are paired with a package token. We take �eld and method
references to be to particular members of some class, and so contain a class reference. By contrast, an identi�er
is a name or a token. We do not use identi�ers at the abstract level though. There is not a speci�c form of
reference for interfaces. These are taken to be a particular form of class reference.

CP_info = Class_ref+ Method_ref+ Field_ref

Since, in Java, only constants of `big' type can appear in the constant pool, these are not present in Java Card.
Moreover, since we consider the constant pool to be fully resolved, we do not need separate entries for names.

5Which we distinguish from Reference_type

RR n�3831



8 Ewen Denney

The index type, CP_index, expresses the rearrangement of the constant pools. We introduce a separate
index type, SM_index, for the method references used by the invokespecial instruction. These are treated
di�erently since the corresponding entries are replaced with supermethod references during conversion.

There is a type for method information structures

Method_info

Since types are coded di�erently in the two formats we introduce an abstract type

Type_code

We follow Bertelsen [Ber97] in considering the constant pool to be partially resolved. For example, rather than
taking a method reference in the class �le format to be a tag (which can be ignored) plus a class index (the
reference at which, in turn, contains an index to a string constant) and a signature (that is, a name-and-type
index, which also contains indices), we just represent it as a tuple of class name and descriptor.

Finally, we use types for grouping parts of the transformation.

Package j Class j Pack_methods j Pack_fields j Constant_pool

Using these basic types, we can then construct complex types using the usual type constructors. We will
use (non-dependent) sum, product, function and list types (denoted ��). We do not use lists much since it is
simpler to represent tables as functions with a domain of indices rather than lists.

The virtual machines are formalised as follows:

Locals = Nat! Word

Config = Bytecode� Word� � Locals� Class_ref

Bytecode = Instruction+ (Bytecode� Bytecode) + Config

Instruction= Nop+ Invokevirtual CP_index+ Checkcast Typecode+ Invokespecial SM_index � � �

We treat the instructions as types, and give full details in the next section. Since bytecode contains indices into
the constant pool, it changes during tokenisation. We could model this in a number of ways. One possibility
would be to treat the indices themselves as auxiliary functions (Börger and Schulte [BS98] do something similar
to this), although this is essentially equivalent to the approach we have taken. The essential point is that
Bytecode depends on CP_index and, indeed, other types.

The tokenisation requires us to make various distinctions, such as between static and instance �elds, which
are not needed for some auxiliary functions.

There are other constructed types, which we need not be directly concerned with. For example:

Class_inst_obj = Class_ref� IV

In Java, array types contain the array dimension, whereas array objects contain the length. Since arrays are
unidimensional in Java Card, the dimension is unnecessary.

Array_obj = Nat� Array_type� (Nat! Value)

Array_type = Primitive_type+ Class_ref

Object = Class_inst_obj+ Array_obj

IV = Field_ref! Value

We will assume that the classes are grouped correctly according to their package.

Environment= Package_ref! Package

Heap = Object_ref! Object

INRIA



Correctness of Java Card Tokenisation 9

5 Operational Semantics

The o�cial speci�cation of the JCVM (and JVM) is given in terms of frames. This is the state of the current
method invocation, together with any other useful data. There is some choice for how to model frames and
the various formalisations of bytecode semantics in the literature di�er slightly in their approach. Although
the o�cial speci�cation also mentions a reference to the current constant pool we will calculate this from the
current class reference.

We abstract away from details of program counters and (literal) byte codes, and instead formalise the code
as abstract syntax. We introduce the notion of con�guration, consisting of the (abstract syntax of the) code of
the current method still to be executed, the operand stack, the local variables, and the current class reference.
We model local variables as a partial function, but represent this as a list.

To account for method invocations, it is convenient to allow a con�guration itself to be considered as an
instruction. When a method is invoked, the next instruction becomes a current con�guration. Instead of a
stack of frames, then, we have a single piece of `code' (in this general sense). This form of closure is equivalent
to the traditional idea of a call stack.

We use a single-step SOS, Since execution does not terminate, as such, we introduce an arti�cial instruction
nop to signify the termination of an instruction. The following two rules are standard for SOS:

hb1; ops; l; ci ) hb01; ops
0; l0; c0i

hb1; b2; ops; l; ci ) hb01; b2; ops
0; l0; c0i

hb1; ops; l; ci ) hnop; ops0; l0; c0i

hb1; b2; ops; l; ci ) hb2; ops0; l0; c0i

For con�gurations we use the rule:

f ) f 0

hConfig f; ops; l; ci ) hConfig f 0; ops; l; ci

We will write Config (b; o; l; c) as hb; o; l; ci.
The method invocation instructions (and others) take an argument which is an index into either the constant

pool of a class �le, or into the constant pool component of a CAP �le. This means that the `concrete' bytecode
is itself dependent on the implementation.

Thus we de�ne a transition relation

) � Config� Arrow� Config

where
Config = Bytecode� Word� � Locals� Class_ref

Arrow = Global_state! Global_state

Global_state = Environment� Heap

Bytecode = Instruction+ (Bytecode� Bytecode) + Config

Instruction = Nop+ Invokevirtual CP_index+ Invokestatic CP_index+
Invokeinterface CP_index+ Invokespecial SM_index+ Return+
New CP_index+ Putstatic CP_index+ Getstatic CP_index+
Putfield CP_index+ Getfield CP_index+ Checkcast Typecode+
Instanceof Typecode

The rules are given in the following form.

hypothesis 1
...

hypothesis n

con�g
statechange

=) con�g

Hypotheses are either conditions or assignments. In fact, almost all hypotheses here are assignments. The
only conditions used are in invokespecial, where the predicate super_invocation is used to choose between
two behaviours, and in checkcast, where an exception can be raised. We make liberal use of wildcards `_' in
assignments to suppress unimportant details.

RR n�3831



10 Ewen Denney

When the heap and environment do not change, we will not bother to write the label explicitly. Since at
most one transition can be a hypothesis, we adopt the convention that, unless stated otherwise, the label on
the arrow of the conclusion is the same as that on this hypothesis. Moreover, the arrow on a transition with no
transitions for hypotheses is the identity, id(heap;env). We can implicitly use heap and env in the hypotheses.

If an instruction changes the heap or the environment, then we label the arrow with an operation which
abstracts the e�ect on the global state. For example, add(r; o) is the arrow

hh; ei 7! hh+ (r 7! o); ei

We factor out those tedious parts of the semantics which are common to most instructions into a number
of auxiliary selector functions. We adopt the convention of using capitalised names for types, and lower case
names for the corresponding selector functions. So, we have:

constant_pool : Class_ref! Constant_pool

where Constant_pool is the abstract type of the constant pool.
We give the semantics of those instructions which make use of the constant pool and class hierarchy, namely6:

� the various method invocation instructions,

� instructions for instantiating and accessing classes, and

� the two type checking instructions.

By virtue of the veri�cation phase, we can assume that various static checks have been carried out. We use
a number of auxiliary functions. Certain functions have preconditions, which we take as concomitant with the
well-formedness of the class �le. Some functions use the environment and the heap. Rather than pass these as
explicit arguments we will assume them to be globally accessible.

The lookup function takes the class reference where a method is declared, together with the actual method
reference (which contains the actual class reference), and returns the class reference where the method is de�ned
together with the code. We assume that the declared and actual class are in the same class hierarchy.

lookup : Class_ref� Method_ref! Class_ref� Bytecode

We use a separate function lookup_int for looking up interface methods, since they are treated di�erently.

lookup_int : Class_ref� Interface_method_ref! Class_ref� Bytecode

instance_fields(c) returns the default values for the instance �elds in c.

instance_fields : Class_ref! (Field_ref! Value)

static_val(f) returns the static value in �eld f .

static_val : Field_ref! Value

instOf(r; o) returns a boolean corresponding to whether the object o can be case to reference type r.

instOf : Reference_type� Object! Bool

The functions add and update are used in formalising the operational semantics. add (r; o) puts the new
binding r 7! o on the heap, and update(f; v) changes the binding of static �eld f to value v. We can de�ne
add : Object_ref� Object! Statechange independently of the underlying format, so do not regard it as an
auxiliary function. In constrast, since we assume that the values of static �elds are stored in the class/CAP �le
(though this is not clear), the update function changes the environment and so depends on the format.

update : Field_ref� Value! Statechange

where
Statechange= Global_state! Global_state

6With the exception of aastore. We also ignore invokevirtual on array objects, and native methods.
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Global_state = Environment� Heap

The structure of the class/CAP �le need not be visible to the operational semantics. We need only be able to
extract certain data corresponding to a particular method or class, such as the appropriate constant pool.

super(c) returns a reference to the superclass of c.

super : Class_ref! Class_ref

The function super_invocation is used in the semantics of the invokespecial instruction, and returns a
boolean corresponding to whether or not an invocation should be of a supermethod.

super_invocation : Class_ref� Method_ref! Bool

The functions method_class, method_code and method_nargs return the class, code and number of arguments
for a given method reference.

method_class : Method_ref! Class_ref

We only use method_class for static (and super) method references.

method_code : Method_ref! Bytecode

method_nargs : Method_ref! Nat

The function method_code assumes that the appropriate method is de�ned at the given class and does not do
any searching. It is used in the semantics of the invokestatic and invokespecial instructions.

Finally, since reference types are represented di�erently in the two formats, we use a function reference_type
to abstract away from the concrete format (expressed using a natural and/or an index into the constant pool)
and return the actual type:

reference_type : Type_code� Class_ref! Reference_type

5.1 Method Invocation

Note that whereas some of these operations have class loading aspects in Java, Java Card does not have dynamic
class loading.

5.1.1 Invokevirtual

The procedure is:

1. The two byte index, i, into the constant pool is resolved to get the declared method reference containing
the declared class reference and a method identi�er (either a signature or token).

2. The number of arguments to the method is calculated.

3. The object reference, r, is popped o� the operand stack.

4. Using the heap, we get heap(r) = hact_cref;_i, the actual class reference (fully quali�ed name or a
package/class token pair).

5. We then do lookup(act_cref; dec_mref), getting the class where the method is implemented, and its
bytecode. The lookup function is used with respect to the class hierarchy (environment).

6. A new con�guration is created for this method and evaluation proceeds from there.

dec_mref := constant_pool (c)(i) get declared method reference from constant pool
n := method_nargs(stat_mref) get number of arguments
hact_cref;_i := heap(r) get actual class reference from heap
hm_class;m_codei := lookup(act_cref; dec_mref) look up method

hinvokevirtual i; a1 : : : an :: r :: s; l; ci ) hhm_code; hi; a1 : : : an :: r;m_classi; s; l; ci
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5.1.2 Invokestatic

Invocation of class (static) methods.

dec_mref := constant_pool (c)(i) get declared method reference from constant pool
n := method_nargs(stat_mref) get number of arguments
m_class := method_class (dec_mref) get class of method
m_code := method_code (dec_mref) get method code

hinvokestatic i; a1; : : : ; an :: s; l; ci ) hhm_code; hi; a1; : : : ; an;m_classi; s; l; ci

5.1.3 Invokeinterface

By virtue of the veri�cation phase, we can assume that various static checks have been carried out and that, for
example, the resolved method is not an initialization method (<init> or <clinit>), that act_cref implements
the interface, and that there are n�1 arguments on the operand stack. According to [LY97], the n is a historical
redundancy. A run-time exception can be thrown if the object reference r is null.

int_mref := constant_pool (c)(i) get declared method reference in constant pool
n := method_nargs(int_mref) get number of arguments
hact_cref;_i := heap(r) get class name from heap
hm_class;m_codei := lookup_int(act_cref; int_mref) look up interface method

hinvokeinterface i; a1; : : : ; an :: r :: s; l; ci ) hhm_code; hi; a1; : : : ; an;m_classi; s; l; ci

5.1.4 Invokespecial

The invokespecial instruction has two behaviours, depending on the modi�ers of the actual class, and the
kind of method invoked. Either the superclass of the actual class is searched, or a method of the actual class
itself is used, which is allowed to be private or an initialization method. The reasoning is described in [LY97]
as:

if :<init> ^ :private^ (actual_class < method_class) ^ super(actual )
then

super_method
else if <init> ^ uninitialised(object_ref )
then

init_method
else /* may be private */

actual_class_method

An analysis is carried out to determine which of these cases holds. Although this might be carried out at
run-time in the class format, in the CAP format it is analysed statically as part of the conversion process, so
that the method reference indicates explicitly whether or not it is a super invocation. However, we abstract
this test out into a function super_invocation.

Hence it is unnecessary to get the class name from the heap at runtime. A static data�ow analysis during
veri�cation ensures that methods are always initialized before use.

For invokespecial i, on a `superclass' instance method. Note that we call the lookup with the superclass
of the actual class:

dec_mref := constant_pool (c)(i) get declared method reference in constant pool
n := method_nargs(dec_mref) get number of arguments
super_invocation (c; dec_mref) check for super invocation
super_cref := super(method_class(dec_mref)) get superclass of method call
hm_cref;m_codei := lookup(super_cref; dec_mref) look up method from superclass

hinvokespecial i; a1; : : : ; an :: r :: s; l; ci ) hhm_code; hi; a1; : : : ; an;m_crefi; s; l; ci
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For invokespecial i on instance initialization methods, and methods of the actual class (which may be
private), there is no lookup:

dec_mref := constant_pool (c)(i) get declared method reference in constant pool
n := method_nargs(dec_mref) get number of arguments
:super_invocation (c; dec_mref) check not super invocation
m_class := method_class(dec_mref) get class of method
m_code := method_code(dec_mref) get method code

hinvokespecial i; a1; : : : ; an :: s; l; ci ) hhm_code; hi; a1; : : : ; an;m_classi; s; l; ci

5.1.5 Method Return

The method return instructions do not use the con�guration of the current method.

hhreturn;_;_;_i; ops; l; ci ) hnop; ops; l; ci

5.2 Class Instructions

As mentioned above, Java Card does not support dynamic class loading so these operations all assume that the
appropriate classes are loaded.

5.2.1 Class Instantiation

We can assume that the class is not abstract or an interface, that the class is accessible, and that the operand
stack will not over�ow.

The function instance_fields returns a mapping which gives the default �eld values of a class:

instance_fields : Class_ref! (Field_ref! Value)

static_val : Field_ref! Value

Recall that we de�ne add (r; o), which adds the binding of reference r to object o to the heap, as:

add (r; o) = �he; hi : he; h+ fr 7! ogi

Since we can de�ne add independently of format we do not regard it as an auxiliary function.

c_ref := constant_pool (c)(i) get class reference
iv := instance_fields(c_ref ) compute default values
o := hc_ref ; ivi construct new object
r 2 Object_refndom(heap) �nd new reference

hnew i; ops; l; ci
add(r;o)
=) hnop; r :: ops; l; ci

We assume the existence of a deterministic choice function for selecting a new object reference. We do not de�ne
an auxiliary function, however, since we have not given a concrete implementation of the type Object_ref in
either model. This makes the proof of equivalence slightly easier though, strictly speaking, all that is necessary
is that the transition rules are observably deterministic.

5.2.2 Class Fields

We use the function, update, which takes a class, a static �eld of that class, and a value of compatible type,
and overlays the change to the environment given by updating the �eld with that value. It is because of this
that the environment can change.

f_ref := constant_pool (c)(i) get �eld reference

hputstatic i; v :: ops; l; ci
update(f_ref ;v)

=) hnop; ops; l; ci

f_ref := constant_pool (c)(i) get �eld reference
v := static_val(f_ref ) get static value

hgetstatic i; ops; l; ci ) hnop; v :: ops; l; ci
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5.2.3 Instance Fields

The intructions for putting and getting the instance �eld of an object, r, where the reference r is on the heap,
assume that r is initialized.

f_ref := constant_pool (c)(i) get �eld reference
hc0_ref; ivi := heap(r) get object from heap
o := hc0_ref; iv + ff_ref 7! vgi update object

hputfield i; v :: r :: ops; l; ci
add(r;o)
=) hnop; ops; l; ci

f_ref := constant_pool (c)(i) get �eld reference
hc0_ref; ivi := heap(r) get object from heap
v := iv(f_ref ) get �eld value

hgetfield i; r :: ops; l; ci ) hnop; v :: ops; l; ci

5.3 Type Checking

The instOf : Reference_type� Object ! Bool predicate formalises when an object can be cast to a type.
The object reference, r, is left on the stack. If the condition fails, the instruction throws a CheckCastException.
We do not model this.

d := reference_type(tc; c) get type descriptor
r 6= null) r 2 dom(heap) ^ instOf(d; heap(r)) check cast is valid

hcheckcast tc; r :: s; l; ci ) hnop; r :: s; l; ci

The instanceof instruction has similar semantics to checkcast, though does not throw an exception.
Instead, the object reference on the operand stack is replaced with a bit representing the result of the check.

d := reference_type (tc; c) get type descriptor
b := if instOf(d; heap(r)) then 1 else 0 compute `instance bit'

hinstanceof tc; r :: s; l; ci ) hnop; b :: s; l; ci

6 Name Interpretation

Classes are described by fully quali�ed names, whereas methods and �elds are given signatures, consisting of
an unquali�ed name and a type, together with the class of de�nition. We assume a function pack_name which
gives the package name of a class name.

The data is arranged into class �les, each of which contains all the information corresponding to a particular
class. We only give the detail of those parts used here. We group the class �les by package into a global
environment. Thus env_name(p)(c) denotes the class �le in package p with name c.

6.1 Types

[[Package]]name = Class_name! Class_file

[[Package_ref]]name = Package_name

[[Class_ref]]name = Class_name

[[Field_ref]]name = Class_name� Field_name

[[Method_ref]]name = Class_name� Sig

Sig = Method_name�[[Type]]�name

[[Interface_method_ref]]name = Class_name� Sig

[[Constant_pool]]name = [[CP_index]]name ! [[CP_info]]name
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[[CP_index]]name = Class_name� Index

[[Class]]name = Class_file

Class_file = Class_flags�(Class_name+Void)�Fields_item�Methods_item�Constant_pool_item�Class_name

Class_flags = Class_flag! Bool

Class_flag = Public+ Final+ Super+ Interface+ Abstract

Since there is no overloading of �elds, a �eld signature is just a name.

Fields_item = Field_name! Field_info

Field_info = Field_flags�[[Type]]name � Value

The Value �eld is only required for static �elds.

Field_flags = Field_flag! Bool

Field_flag = Public+ Private+ Protected+ Static+ Final

[[Pack_fields]]name = Class_name! Fields_item

[[Pack_methods]]name = Class_name! Methods_item

Methods_item = Sig! Method_info

Method_info =
Method_flags� Sig�([[Type]]name + Void) � Exception_classes � Maxstack � Maxlocals � Bytecode �
Exception_handlers

The signature is not considered to include the return type. We assume that this signature is the same as the
argument given to the methods item. We represent the �ags as a predicate (boolean function) over the possible
settings. There are various constraints on the �ags which we do not consider here.

Method_flags = Method_flag! Bool

Method_flag = Public+ Private+ Protected+ Static+ Final+ Native+ Abstract

Constant_pool_item = Index! CP_info

Finally,
[[Type_code]]name = [[CP_index]]tok

We do not need to give interpretations for the constructed abstract types. It follows, for example, that

[[CP_info]]name = [[Class_ref]]name + [[Field_ref]]name + [[Method_ref]]name + [[Interface_method_ref]]name

6.2 Auxiliary Functions

We use an extended lambda calculus to de�ne the functions. In addition to typed abstractions and pairs, we
use conditionals, case expressions, let expressions, function overloading, and pattern matching in both lets and
abstractions. We also use set-theoretic constructs, such as union and the map notation.

(lookup : Class_ref� Method_ref! Class_ref� Bytecode)
[[lookup]]name = lookup_name

There are a number of possibilities for how method lookup should be de�ned, depending on the de�nition
of inheritance. For example, [Ber97, Pus98] use a `naive' lookup which does not take account of visibility
modi�ers. A fuller discussion of this appears in [Seg99].
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lookup_name (act_class, (sig, dec_class)) =

let

dec_pk = pack_name(dec_class)

act_pk = pack_name(act_class)

(_,_,_,_,_,meth_dec,_,_)

= env_name (dec_pk) (dec_class)

(_,super,_,_,_,meth_act,_,_)

= env_name (act_pk) (act_class)

(dec_flags,_,_,_,_,_,_) = meth_dec(sig)

in

if meth_act(sig) = undefined

then lookup_name(super, (sig, dec_class))

else if

dec_flags(protected) or dec_flags(public)

or act_pk = act_pk

then let (_,_,_,_,_,code,_) = meth_act(sig)

in (act_class,code)

else lookup_name(super, (sig, dec_class))

(lookup_int : Class_ref� Interface_method_ref! Class_ref� Bytecode)
[[lookup_int]]name = lookup_name

(static_val : Field_ref! Value)
�hc; hf; tii : Field_ref : env_name(pack_name(c))(c):F ields_item(f)

(update : Field_ref� Value! Statechange)
update ((c_name; f_name;_); v) = �he; hi : Environment� Heap :

h�p0 : Package_name : �cn : Class_name : if cn = c_name then

let hf; s; fields;m; cp; ni = e(p0)(c_name)
hflags; d; valuei = fields(f_name) in
hf; s; fields+ ff_name 7! hflags; d; vig;m; cp; ni
else e(p0)(cn) ,

hi

Because of our assumption on the well-formedness of environments, p0 = pack_name(cn).

(instance_fields : Class_ref! (Field_ref! Value))

instance_fields(c_name) =
let h_; super;_; fields;_;_;_;_i = env_name(pack_name(c_name))(c_name) in
if c_name = javacard:lang:Object then instance_fields1(c_name; fields)
else instance_fields(super) [ instance_fields1(c_name; fields)

The function default computes the default values for each type.

instance_fields1(c_name; fields) =
f ( hc_name; f_namei 7! default(d) ) j fields(f_name) = hflags; d;_i ^ :flags(static)g

(instOf : Reference_type� Object! Bool)
instOf(d; o) =

case o of

Class_inst_obj (c_ref ;_)! compat(d; c_ref )
Array_obj (n; a;_)! compat(d; (n; a))

We use the function compat : Reference_type � Reference_type ! Bool which, in turn, uses local
functions compatArray, and supers and interfaces. These latter two return the set of superclasses and
superinterfaces, respectively, of a class. Since we have not considered interfaces here, we assume for now
that interfaces returns the empty set.

compat(d_t, d_s) =

case d_s of
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Class_ref _ -> d_t in supers(d_s) or d_t in interfaces(d_s)

Array_type _ -> case d_t of

Class_ref _ -> d_t = javacard.lang.Object

Array_type _ -> compatArray(d_t,d_s)

compatArray(d_t, d_s) =

let (_, d_1), (_, d_2) = d_t, d_s in

case d_1 of

Primitive _ -> d_1 = d_2

_ -> not primitive(d_2) and compat(d_1, d_2)

(constant_pool : Class_ref! (CP_index! CP_info))
�c : Class_name:�h_; ii : Class_name� Index : let h: : : cp : : :i = env_name(pack_name(c))(c) in cp(i)

(method_class : Method_ref! Class_ref)
�htag; c_name; sigi : Method_ref : c_name

(super : Class_ref! Class_ref)
�c : Class_name : env_name(pack_name(c)) c : Super

(super_invocation : Class_ref� Method_ref! Bool)
�hc; hc0; hm_name; tiii : Class_name� Method_ref :

env_name(pack_name(c))(c):Class_ags(super) ^
m_name 6= <init> ^
:env_name((pack_name(c0))(c0):Methods_item(hm_name; ti):Method_ags(private))

The super class �ag does not seem to be semantically signi�cant. It exists only for reasons of backward
compatibility.

(method_code : Method_ref! Bytecode)
�htag; c_name; sigi : Method_ref : env_name(pack_name(c_name)) c_name :Methods_item(sig) : Bytecode

(method_nargs : Method_ref! Nat)
�hc_name; hm_name; typesii : Method_ref : length(types)

The function length returns the length of the list of types.

(reference_type : Type_code� Class_ref! Reference_type)
�hi; ci : f(env(pack_name(c))(c):Constant_pool_item(i))

We assume a partial coercion function, f , of type CP_info ! Array_type, which takes a class name
representing an array type, and returns the actual array type.

7 Token Interpretation

In the token format, the data is arranged by packages into CAP �les. Each CAP �le consists of a number of
components.

There are tokens for the various entities � packages, classes, static �elds, static methods, instance �elds,
virtual methods, and instance methods � each with a particular range and scope. Although package tokens
should be scoped within a particular CAP �le, (being indices into the package table which gives an AID), we
will assume they are externally visible here.

The export �le contains a list of tokens for imported entities. We only make use of this in assuming the
existence of a token for the class javacard.lang.Object.

References to items external to a package are via tokens, which are used to �nd internal o�sets. For example,
the class component consists of a list of class information structures, each of which has method tables indexed by
tokens that give o�sets into the method component, where the method information is found. Internal references
use the o�sets directly.
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7.1 Types

[[Package]]tok = CAP_file

[[Package_ref]]tok = Package_tok

It follows that an environment consists of a mapping from package tokens to their corresponding CAP �le.

envtok : Package_tok! CAP_file

A CAP �le consists of 11 components, though not all are used for method lookup (or, indeed, the rest of
the operational semantics). We just include those components we need.

CAP_file = Constant_pool_comp�Class_comp�Method_comp�Static_field_comp�Descriptor_comp

The class reference is either an internal o�set into the class component of the CAP �le of this package, or
an external reference composed of a package token and a class token. However, since we need to relate the
reference to class names, we will assume that all references come with package information, even though this is
super�uous in the case of internal references. Thus we de�ne

[[Class_ref]]tok = Package_tok� (Class_tok+ Offset)

[[Field_ref]]tok = Static_field_ref+ Instance_field_ref

Static_field_ref = [[Class_ref]]tok � (Static_field_tok+ Offset)

Instance_field_ref = [[Class_ref]]tok � Instance_field_tok

[[Method_ref]]tok = Static_method_ref+ Virtual_method_ref+ Super_method_ref

Static_method_ref = [[Class_ref]]tok � (Static_method_tok+ Offset)

Virtual_method_ref = [[Class_ref]]tok � Virtual_method_tok

Super_method_ref = [[Class_ref]]tok � Virtual_method_tok

[[Interface_method_ref]]tok = [[Class_ref]]tok � Interface_method_tok

[[CP_index]]tok = Package_tok� Index

Let SMP = SM_index! SM_ref (`supermethod pool').

[[Constant_pool]]tok = [[CP_index! CP_intro]]tok � SMP

[[Class]]tok = Class_info

Class_comp = Classes� Interfaces

We ignore the tag and size items.

Classes = Offset! Class_info

Class_info = Class_flags� Interface_count� Super� Public_table� Package_table�
[[Class_ref]]tok

The class reference is to the class itself.

Class_flags = Class_flag! Bool

Class_flag = Interface+ Shareable

Access information is not given by the �ags in CAP format. We assume that each Class_info structure is
labelled with the corresponding class reference. We do not regard OxFFFF as an o�set.

Public_table = Public_base� Public_size� (Index! Offset+ fOxFFFFg)

Package_table = Package_base� Package_size� (Index! Offset)
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The two method tables each contain a base, size and `list' of entries. The entries are de�ned from the base to
base+ size� 1 inclusive.

It is convenient to sometimes consider the two method tables together. We write Class_info :Tables for the
union of the two tables.

We abstract from the details of the method and constant pool components and regard them as mappings
from indices to entries. We use Index to access elements of lists, and Offset to access tables, but since we
formalise both as functions, the distinction is not important.

Constant_pool_comp = [[Constant_pool]]tok

[[Pack_methods]]tok = Method_comp

Method_comp = Exception_handlers� Methods

Methods = (Offset! Method_info)

Method_info = Method_flags� Maxstack� Nargs� Max_locals� Bytecode

Method_flags = Method_flag! Bool

Method_flag = Extended+ Abstract

Exception_handlers = Index! Exception_handler_info

[[Pack_fields]]tok = Static_field_comp� Descriptor_comp

The static �eld component contains details of the static �elds in the classes of a package. The instance �elds,
on the other hand, only appear in the descriptor component. We assume o�sets are into the appropriate list.

Static_field_comp = Array_init� Non_default_values

Array_init = Offset! Array_init_info

Array_init_info = Count� (Index! Value)

Non_default_values = Offset! Value

The descriptor component is used for �parsing and verifying� the CAP �le. The only use of it in the semantics
seems to be to �nd the types of instance �elds for the new instruction.

Descriptor_comp = Class_ref! Class_descriptor_info

Class_descriptor_info = (Class_tok+ f0xFFFFg)� Access_flags� Offset�
Interface_count� Field_count� Method_count�
Interfaces� Field_descs� Method_descs

Rather than represent arrays as lists, and then de�ne functions to traverse the lists and �nd an entry with
a given index, we choose to represent the arrays directly as functions of the various indices. In the class �le,
where entities have unique names, the name can be used as an index. In the CAP �le, however, it is not so
clear what to use as an index since some arrays contain both internal and external items. In the speci�cation
[Sun99] the Fields item (Field_descs here) is a list of �eld descriptors, of the form

(Token+ f0xFFFFg)� Access_flags� [[Field_ref]]tok � Type_desc

The �eld descriptor items contain a token (or OxFFFF) and a �eld reference. Presumably, the �eld reference
gives the o�set for static �eld references, and repeats the token for instance �eld references. We reformulate
this in a triple Field_descs = Instance_fields� Pub_static_fields� Pack_static_fields where

Instance_fields = Token! Access_flags� [[Field_ref]]tok � Type_desc

Pub_static_fields = Token! Access_flags� [[Field_ref]]tok � Type_desc

Pack_static_fields = [[Field_ref]]tok ! Access_flags� Type_desc

Thus, the transformation should really have another pass, in which the functions would be �attened into
arrays, and the true o�sets calculated using the size of the various entries. We ignore this here.

We do not give the details for the Method_descs item since it is not used in the semantics.
Finally,

[[Type_code]]tok = Nat�([[CP_index]]tok + f0g)
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7.2 Auxiliary Functions

The lookup function takes a class reference (the declared class), a method reference (in the actual class), and
returns the reference to the class where the code is de�ned, together with the bytecode itself.

We use several local auxiliary functions:

class_info : Class_ref! Class_info

class_info0 : Package� Class_ref! Class_info

methods_array : Class_ref! (Offset! Method_info)

same_package : Package_ref� Package_ref! bool

same_package(c_ref ; c0_ref) =
let(p_tok;_); (p0_tok) = c_ref ; c_ref

0
in

p_tok = p0_tok

For a given class reference, the function class_info �nds the corresponding class information structure in
the global environment.

class_info (c_ref) =

let (..., cp_comp, class_comp, method_comp, ...) : CAP_file =

case c_ref of

Int (int_pack_tok, _) -> env_tok(int_pack_tok)

Ext (ext_pack_tok, _) -> env_tok(ext_pack_tok)

in

case c_ref of

Int (_, offset) -> class_comp.Classes (offset)

Ext (_, class_tok) ->

let class_offset = class_offset(class_tok)

in class_comp.Classes (offset)

We de�ne a variant, class_info0, which returns the class information structure in a particular CAP �le.

methods_array (class_ref) =

let (..., method_comp, ...) : CAP_file =

case class_ref of

Int (int_pack_tok, _) -> env_tok(int_pack_tok)

Ext (ext_pack_tok, _) -> env_tok(ext_pack_tok)

in

method_comp.Methods

We assume the existence of several functions for resolving external tokens to internal o�sets.7

class_offset : Package_tok� Class_tok! Offset

static_field_offset : Package_tok� Class_tok� Field_tok! Offset

method_offset : Package_tok� Class_tok� (Virtual_method_tok+ Static_method_tok)! Offset

We extend these de�nitions in the obvious way to take arbitrary references.
The main steps of lookup_tok for virtual methods are:

1. Get method array for the package of the actual class.

2. Get class information for the actual class.

7It is not clear how these should be implemented. One possibility is through the descriptor component; another is to use the
export component.
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lookup_tok (act_class_ref, (tag, dec_class_ref, method_tok)) =

case tag of

CONSTANT_virtual_method_ref, CONSTANT_super_method_ref ->

let methods = method_array (act_class_ref)

in

let (..., super, public_base, public_table, package_base, package_table,...)

: Class_info =

class_info(act_class_ref)

in

if method_tok div 128 = 0 then /* public */

if method_tok >= public_base then

let method_offset = public_table[method_tok - public_base]

in

if method_offset <> 0xFFFF

then (act_class_ref, methods[method_offset].Bytecode)

else /* look in superclass */

lookup_tok(super, (tag, dec_class_ref, method_tok))

else /* look in superclass */

lookup_tok(super, (tag, dec_class_ref, method_tok))

else /* package */

if method_tok >= package_base /\

(same_package(dec_class_ref, act_class_ref)

\/ tag = CONSTANT_super_method_ref)

then

let method_offset = package_table[method_tok mod 128 - package_base]

in (act_class_ref, methods[method_offset].Bytecode)

else /* look in superclass */

lookup_tok(super, (tag, dec_class_ref, method_tok))

3. If public:
if de�ned then get info else lookup super

If package:
if de�ned ^ visible then get info else lookup super

(lookup : Class_ref� Method_ref! Class_ref� Bytecode)
[[lookup]]tok = lookup_tok

(lookup_int : Class_ref� Interface_method_ref! Class_ref� Bytecode)
[[lookup_int]]tok = lookup_int_tok � not de�ned here

(static_val : Field_ref! Value)
�hhp; ci; fi : Field_ref :

let o�set = case f of

Int i! i

Ext tok ! static_field_offset(p; c; tok)
in

env_tok(p):Static_field_comp:Non_default_values(o�set)
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(update : Field_ref� Value! Statechange)
update(hhp; ci; fi; v) =
�he; hi:
h�p0:
if p0 = p then

let h_;_;_; hArray_init;Ndvi;_i = e(p) in
let o�set = case f of

Int i! i

Ext tok ! static_�eld_o�set(p; c; tok)
in

h_;_;_; hArray_init;Ndv+ fo�set 7! vgi;_i
else e(p0)

; hi

(constant_pool : Class_ref! (CP_index! CP_info))

[[constant_pool]]tok =
�hp_tok;_i:�x:let hcp; smpi = env_tok(p_tok):Constant_pool_comp in

case x of

Index h_; ii ! cp(i)
SM h_; ii ! smp(i)

(instance_fields : Class_ref! (Field_ref! Value))
instance_fields(c_ref ) =

let (p_tok; c_tok) = c_ref in

fields = env_tok(p_tok):Descriptor_comp.Fields.Instance_�elds in
super = class_info(c_ref ):Super in

if c_tok = javacard:lang:Object_token) then
instance_fields1(c_ref ; fields)

else instance_fields(super) [ instance_fields1(c_ref ; fields)

We assume the existence of a token, javacard.lang.Object_token. The function default computes the
default values for each type.

instance_fields1(c_ref ; fields) =
f ( hc_ref ; f_toki 7! default(d) ) j 9f_tok : fields(f_tok) = hflags; f_ref ; dig

(instOf : Reference_type� Object! Bool)
The same as in the name interpretation, except for the de�nition of supers and interfaces.

(super : Class_ref! Class_ref)
�c_ref : Class_ref : class_info(c_ref ) : Super

(super_invocation : Class_ref� Method_ref! Bool)
�h_; htag;_;_ii : Class_ref� Method_Ref : tag = CONSTANT_super_method_ref

(method_class : Method_ref! Class_ref)
�hc_ref ;_i : Method_ref : c_ref
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(method_code : Method_ref! Bytecode)
method_code(m_ref : Method_ref) =

case m_ref of

CONSTANT_virtual_method_ref(c_ref ;m_tok) !
let h_;_;_;_;_; public_table; package_table;_i = class_info(cref) in
let h_;_;method_compi = env_tok(pack_tok) in
let o�set = tables[m_tok]
in (method_comp:Methods[o�set ]):Bytecode

CONSTANT_static_method_ref(p_tok; c; loc)!
let o�set =
case loc of

m_tok ! method_offset(p_tok; c;m_tok)
o�set 0 ! o�set 0

in (method_comp:Methods[o�set ]):Bytecode

(method_nargs : Method_ref! Nat)
�m_ref : Method_ref : method_info(m_ref ) : Nargs

We use a local function method_info to return the Method_info corresponding directly to a method
reference.

(reference_type : Type_code� Class_ref! Reference_type)
�hn; i; hp; cii : case n of

0 ! f(env_tok(p) : Constant_pool_comp(i))
10 ! Array Boolean

11 ! Array Byte

12 ! Array Short

13 ! Array Int

14 ! Array f(env_tok(p) : Constant_pool_comp(i))

The function f : CP_info! Reference_type is used to convert the type:

�x : CP_info : case x : CP_info of

Class_ref c! (Class_ref c : Reference_type)

8 Formalisation of Equivalence

We now formalise the equivalence between the class and CAP formats as a family of relations,
fR� : [[�]]name $ [[�]]tokg�2Abstract_type indexed by abstract type, �. In fact, it is convenient to cheat a lit-
tle by de�ning relations for certain types that do not correspond to any abstract types. The idea is that there
is a �xed family of relations such that x R� y when y is a possible transformation of x. The relations are not
necessarily total, i.e. for some x : [[�]]name, there may not be a y such that x R� y. We make no restrictions on
the relation domains.8

We make various suppositions of the well-formedness of the input. For example, we assume that the class hi-
erarchy is well-founded and that javacard.lang.Object is the top. We make no assumptions of well-formedness
for CAP �les, however. The only notion of well-formedness for a CAP �le is that it is the result of transforming
a collection of well-formed class �les. Formally, the relations are de�ned as a mutually inductive collection of
constraints, R�, for each type �, where the types, �, are given by the grammar:

8For example, arrays are not in the domain of RClass_ref. This is not important for the proof of correctness. However, this
would have to be taken into account for the development of an algorithm.
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 ::= Bool j Nat j Object_ref j Boolean j Byte j Short j Value j Word

� ::= Package_ref j Class_ref j Static_field_ref j Instance_field_ref j Static_method_ref j
Interface_method_ref j Virtual_method_ref j SM_ref

� ::= CP_index j SM_index j CP_info j Method_info j Type_code j Package j Class j
Constant_pool j Pack_methods j Pack_fields

� ::=  j � j � j � � �0 j � ! �0

There are two sources of underspeci�cation here. On the one hand, the relations really can be non-functional.
On the other, there is a choice for what some of the relations are. For example, RClass_ref is some bijection
satisfying certain constraints. The relations between the `large' structures, however, are completely de�ned in
terms of those between smaller ones.

We �rst give the standard de�nitions of logical relations for the type constructors used here. These are used
throughout the de�nition of the transformation. Then there are two parts to the transformation itself: the
tokenisation, de�ned as the relations R�, and the `componentisation', de�ned as the R�.

8.1 Logical Relations

There are standard de�nitions of R���0 , R�!�0 and R�+�0 in terms of R� and R�0 . In addition, for each basic
type , we have R = id .

a R a
0 () a = a0

f R�!�0 f
0 () 8a R� a

0 : fa R�0 f
0a0

In general, functions are partial. Thus if fa is de�ned and a R� a
0, then f 0a0 must be de�ned.

ha; bi R���0 ha
0; b0i () a R� a

0 ^ b R� b
0

a R�+�0 a
0 ()

(9b; b0 : a = Theta b ^ a0 = Theta b0 ^ b R� b
0) _

(9c; c0 : a = Theta0 c ^ a0 = Theta0 c0 ^ c R�0 c
0)

Moreover, there is an obvious de�nition for lists:

[ ] R�� [ ]

a :: as R�� a
0 :: as0 () a R� a

0 ^ as R�� as
0

Strictly speaking, because the types are mutually recursive, we should de�ne the relations recursively, but
we will gloss over this point. As an example of a derived relation, it follows that RHeap is de�ned as:

heapname RHeap heaptok () 8r : Object_ref : heapname(r) RObject heaptok(r)

where RObject is de�ned in terms of RClass_ref.

8.2 Tokenisation

The relations R� represent the tokenisation of items. The general idea is to set up relations between the names
and tokens assigned to the various entities, subject to certain constraints described in the speci�cation.

In order to account for token scope, we relate names to tokens paired with the appropriate context informa-
tion. For example, class tokens are scoped within a package, so the relation RExt_class_ref is between individual
class names, and pairs of package and class tokens. We must add a condition, therefore, to ensure that the
package token corresponds to the package name of this class name.

We assume that each of these relations is a bijection (with one exception to account for the copying of virtual
methods in the token format). Formally, a relation, R, is bijective when it is functional in both directions.

aR b ^ a0R b ) a = a0

and vice versa,
aR b ^ aR b0 ) b = b0
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However, relations are only bijective modulo the equivalence between internal and external references so we
modify this to:

aR b ^ a0R b ) a = a0

aR b ) (aR b0 () Equiv(b; b0))

where equivalence, Equiv, of class references is de�ned as the re�exive symmetric closure of:

Equiv(hp_tok; o�seti; hp_tok; c_toki) () class_offset(p_tok; c_tok) = o�set

We will say that the relation is `externally bijective'. The second condition contains two parts: that the relation
is injective modulo Equiv, and that it is closed under Equiv. We say that R is an external bijection when these
conditions hold. We extend the de�nition of Equiv and external bijection to the other references. For example,

Equiv(hc_ref ; f_toki; hc0_ref; f 0_toki) () f_tok = f 0_tok ^ Equiv(c_ref ; c0_ref)

We cannot override static methods, but can override interface and virtual methods. The only bearing this
has on the relations is in certain constraints for the tokenisation of overridden virtual methods.

The tokenisation process assigns tokens to external class references, static �elds and static methods, and to
all instance �elds, virtual methods and interface methods.

These relations are de�ned with respect to the environment (in name format). We use a number of abbre-
viations for extracting information from the environment. We write c < c0 for the subclass relation (i.e. the
transitive closure of the direct subclass relation) and � for its re�exive closure. In the token interpretation this
is modulo Equiv. We write m_tok 2 c_ref when a method with token m_tok is declared in the class with
reference c_ref . That is, m_tok 2 dom(Tables) of class_info(c_ref ) (de�ned on p. 20), and pack_name(c)
for the package name of the class named c.

We de�ne functions for accessing �ags:

Class_flag(c_name; flag) = env_name(c_name) : Class_flags(flag)

Field_flag(c_name; f_name; flag) = env_name(c_name) : F ields(f_name) : F ield_flags(flag)

The tokenisation uses the notion of external visibility.

Externally_visible(c_name) = Class_flag(c_name; Public)

Externally_visible(c_name; f_name) = Class_flag(c_name; Public) ^ Field_flag(c_name; f_name; Public)

We will also write public(sig) and package(sig).
The relations for Instance_field_ref, Virtual_method_ref and Interface_method_ref use Class_ref,

de�ned in the next section.

(Package_ref) As mentioned above, we take package tokens to be externally visible. The relation RPackage_ref

is simply de�ned as any bijection between package names and tokens.

(Ext_class_ref) A bijection such that: c_name RExt_class_ref (p_tok; c_tok) ) Externally_visible(c_name)
^ pack_name(c_name) RPackage_ref p_tok

(Instance_field_ref) Package tokens must be higher than public tokens. Note that, in contrast to virtual
method tokens, public and package tokens are drawn from the same namespace, and so this condition
does not follow automatically.
hc_name; sigi RInstance_field_ref hc_ref ; f_toki ^
hc0_name; sig0i RInstance_field_ref hc

0_ref; f 0_toki ^ public(sig)^ package(sig0)) f_tok < f 0_tok

The relation respects RClass_ref:
hc_name; sigi RInstance_field_ref hc_ref ; f_toki ) c_name RClass_ref c_ref

Since the relation uses RClass_ref it is not bijective. However, it is functional from names to tokens,
whereas in the other direction we have:
hc_name; sigi RInstance_field_ref hc_ref ; f_toki ^ hc_name; sigi RInstance_field_ref hc

0_ref; f 0_toki
) Equiv(hc_ref ; f_toki; hc0_ref; f 0_toki)
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(Ext_static_field_ref) An external bijection such that: hc_name; f_namei RExt_static_field_ref hc_ref ; f_toki )
Externally_visible(c_name; f_name) ^ Field_flag(c_name; f_name; Static) ^ c_name RExt_class_ref c_ref

(Ext_static_method_ref) An external bijection such that: hc_name; sigi RExt_static_method_ref hc_ref ;m_toki )
Externally_visible(c_name; sig)^Method_flag(c_name; sig; Static)^ c_name RExt_class_ref c_ref

(Virtual_method_ref) This is not a bijection because of the possibility of copying. Although `from names to
tokens' we do have:

hc_name; sigi RVirtual_method_ref hc_ref ;m_toki ^ hc0_name; sig0i RVirtual_method_ref hc_ref ;m_toki
) c_name = c0_name ^ sig = sig0

for a converse we have:

hc_name; sigi RVirtual_method_ref hc_ref ;m_toki ^ hc_name; sigi RVirtual_method_ref hc
0_ref;m0_toki

) (c_ref � c0_ref _ c0_ref � c_ref ) ^m_tok = m0_tok

The �rst condition says that if a method overrides a method implemented in a superclass, then it must take
the same token. Restrictions on the language means that overriding cannot change the method modi�er
from public to package or vice versa.
hc_name; sigi RVirtual_method_ref hc_ref ;m_toki ^
hc0_name; sigi RVirtual_method_ref hc

0_ref;m0_toki ^
(c0_name < c_name ^ (package(sig)) same_package(c_name; c0_name)))) m_tok = m0_tok

The second condition says that the (public) tokens for introduced methods must have higher token numbers
that those in the superclass. We assume a predicate, new_method, which holds of a method signature
and class name when the method is de�ned in the class, but not in any superclass.

public(sig) ^ new_method(sig; c_name) ^ (c_name; sig) RVirtual_method_ref (c_ref ;m_tok))
8m0_tok 2 super(c_ref ) :m_tok > m0_tok

Package tokens for introduced methods are similarly numbered, if the superclass is in the same package,
but from 0 otherwise.

package(sig) ^ new_method(sig; c_name) ^
(c_name; sig) RVirtual_method_ref (c_ref ;m_tok) ^ same_package(c_name; super(c_name)))

8m0_tok 2 super(c_ref ) :m_tok > m0_tok

The third condition says that public tokens are in the range 0 to 127, and package tokens in the range
128 to 255.

hc_name; sigi RVirtual_method_ref hc_ref ;m_toki ) (public(sig)) 0 � m_tok � 127) ^ (package(sig))
128 � m_tok � 255)

The speci�cation [Sun99] also says that tokens must be contiguous but we will not enforce this.

(Interface_method_ref) hc_name; sigi RInterface_method_ref hc_ref ;m_toki ) c_name RClass_ref c_ref

8.3 Componentisation

The relations in the previous section formalise the correspondence between named and tokenised entities. When
creating the CAP �le components, all the entities are converted, including the package visible ones. Thus at
this point we de�ne RClass_ref, RStatic_field_ref and RStatic_method_ref, as relations between named items and
either external tokens or internal references, subject to coherence constraints.

We must ensure that if a name corresponds to both an external token and to an internal o�set, then the
token and the o�set correspond to the same entity. There are two ways we could ensure this. One possibility
is, for example, to use the function class_info : Class_ref! Class_info with the constraint:

c_name RClass_ref hp_tok; c_toki ^ c_name RClass_ref hp_tok; offseti )
class_info(hp_tok; c_toki) = class_info(hp_tok; offseti)

The other possibility is to use the o�set function class_offset : Package_tok � Class_tok ! Offset

which returns the internal o�set corresponding to an external token, and then de�ne RClass_ref from this and
RExt_class_ref, and this is the solution we choose here. Clearly, therefore, RClass_ref is not a bijection.
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(Class_ref) We de�ne RClass_ref as an external bijection which respects RExt_class_ref, that is, such that

c_name RClass_ref (p_tok; c_tok) () c_name RExt_class_ref (p_tok; c_tok)

(Static_field_ref)
hc_name; f_namei RStatic_field_ref hp_tok; c_tok; f_toki ()

hc_name; f_namei RExt_static_field_ref hp_tok; c_tok; f_toki

and
hc_name; f_namei RStatic_field_ref hp_tok; c_tok; o�seti ()
9f_tok:o�set = static_field_offset(p_tok; c_tok; f_tok) ^

hc_name; f_namei RStatic_field_ref hp_tok; c_tok; f_toki

(Static_method_ref)
The relation RStatic_method_ref is de�ned similarly, using the function method_offset.

hc_name;m_namei RStatic_method_ref hp_tok; c_tok;m_toki ()
hc_name;m_namei RExt_static_method_ref hp_tok; c_tok;m_toki

and

hc_name;m_namei RStatic_method_ref hp_tok; c_tok; o�seti ()
9m_tok:o�set = method_offset(p_tok; c_tok;m_tok) ^

hc_name;m_namei RStatic_method_ref hp_tok; c_tok;m_toki

The three `big' components are the constant pool, method, and class components. We mainly limit our
de�nition of equivalence to these, though also consider the static �eld and descriptor components.

(CP_index) De�ne [[CP_index]]tok = Package_tok� Index.

A bijection such that hc_name; ii RCP_index hp_tok; i
0i ) pack_name(c_name) RPackage_ref p_tok

(CP_info) We have de�ned CP_info = Class_ref+ Method_ref+ Interface_method_ref+ Field_ref.
We must de�ne how the speci�c �eld and method references in the CAP �le correspond to those in the
class �le.

(Field_ref) f_ref RField_ref htag; f
0_refi ()

Field_flag(f_ref ; Static) ^ tag = CONSTANT_StaticFieldRef^ f_ref RStatic_field_ref f
0_ref

_
:Field_flag(f_ref ; Static) ^ tag = CONSTANT_InstanceFieldRef ^ f_ref RInstance_field_ref f

0_ref

(Method_ref) A method reference in the class �le can become either a static, super or virtual method
reference. Super method references also use virtual tokens.

We use predicates, static and super, to determine whether a method reference in the class �le can
correspond to a static or super method invocation. If static holds, then the method must be a static
method reference. However, the super predicate just indicates the possibility that a method could
be a super reference. If it is called from invokespecial, this will be the case, but it will be a virtual
method reference when called from invokevirtual. Let us write cp for [[constant_pool]]tok(c_ref ),
where c_ref is the relevant class reference.

super(m_ref ) () 9i : invokespecial i 2 code ^ cp(i) = m_ref

The code can appear in any package.

m_ref RMethod_ref htag;m
0_refi ()

static(m_ref ) ^ tag = CONSTANT_StaticMethodRef ^m_ref RStatic_method_ref m
0_ref

_
:static(m_ref ) ^ super(m_ref ) ^
tag = CONSTANT_SuperMethodRef ^ m_ref RVirtual_method_ref m

0_ref
_
tag = CONSTANT_VirtualMethodRef ^m_ref RVirtual_method_ref m

0_ref
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(SM_index)
A bijection from the CP_index such that the entry is potentially a supermethod, that is, the i : CP_index
such that super(cp(i)).

(SM_ref)
Relates virtual method references to the corresponding supermethod references.

Since SMP = SM_index ! SM_ref (`supermethod pool'), the de�nition of RSMP follows. Bytecode is
de�ned using invokevirtual SMP_index.

(Method_info)
We only treat certain parts of the method information here:

hflags; sig;_;_;maxstack;maxlocals; code;_i RMethod_info hflags
0;maxstack0; nargs0;maxlocals0; code0i

()
flags RMethod_flags flags

0 ^
maxstack = maxstack0 ^
size(sig) = nargs0 ^
maxlocals = maxlocals0 ^
code RBytecode code

0

Flags are used less in the CAP format than in class �les. Instead, access information is implicit in the use
of tokens. For class �ags, we simply have

Interface RClass_flag Interface

Although, there is also a Shareable �ag in the CAP format, we assume that no constraints are placed on
this by a class �le.

(Type_code)
Bytecode veri�cation ensures that the constant pool entry must be a reference type.

i RType_code hn; i
0i ()

let hc;_i = i in

let cp_entry = constant_pool(c)(i) in
9rt : Reference_type ::Array(rt) :

(n = 0 ^ i RCP_index i
0 ^ cp_entry = rt) _

(n = 10 ^ i0 = 0 ^ cp_entry = Array Boolean) _
(n = 11 ^ i0 = 0 ^ cp_entry = Array Byte) _
(n = 12 ^ i0 = 0 ^ cp_entry = Array Short) _
(n = 13 ^ i0 = 0 ^ cp_entry = Array Int) _
(n = 14 ^ i RCP_index i

0 ^ cp_entry = Array rt)

We relate individual classes, but methods and constant pools are grouped together. Thus the name inter-
pretation is all the information in one package and so, for example, [[Pack_methods]]name : Class_name !
Methods_item is the `set' of method data for all classes.

We use the auxiliary function, method_offset : Package_tok�Class_tok�Method_tok! Offset. This
is because the method information is spread between the two components in the token format. The relation
RClass ensures that a named method corresponds to a particular o�set, and RPack_methods ensures that the entry
at this o�set is related by RMethod_info.

(Constant_pool)

cp_name RConstant_poolhcp_tok; smpi () cp_name RCP_index!CP_info cp_tok ^ cp_name RSMP smp

It is in RCP_index : Class_name� Index $ Package_tok� Index that the reorganisation is expressed
essentially.

(Pack_methods) The method item and method component contain the implementations of both static and
virtual methods.
methods_name RPack_methods method_comp ()
8hc_name; sigi RMethod_ref hp_tok; c_tok;m_toki:

methods_name(c_name; sig) RMethod_info (methods_comp:methods)(method_offset(p_tok; c_tok;m_tok))
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(Pack_�elds) In the class �le, all the �eld information is stored in the �elds item. In the CAP �le it is split
between the static �eld and descriptor components. The former contains the values of the static �elds,
whereas the latter contains the �ag and type information, for all �elds. In the operational semantics we
only use the type information, however.

As for the other components of the CAP �le, we relate them to an aggregate, fields_name : Class_name!
Fields_item, which groups all the �elds items in class �les of a package. There are four clauses to the
de�nition: for values, instance �elds, public static �elds and package static �elds.

fields_name RPack_fields hDesc_comp; Static_field_compi ()

8hc_name; f_namei RField_ref f_ref :

fields_name c_name f_name : F ield_flags(Static))
fields_name c_name f_name : V alue =

Static_field_comp :Non_default_values(static_field_offset(f_ref ))
^
8hc_name; f_namei RInstance_field_ref hc_ref ; f_toki :
hfields_name c_name f_name; hc_ref ; f_tokii

RInstance_field_info Desc_comp(c_ref ) : F ields : Instance_fields(f_tok)
^
8hc_name; f_namei RExt_static_field_ref hc_ref ; f_toki :
hfields_name c_name f_name; hc_ref ; f_tokii

RPub_static_field_info Desc_comp(c_ref ) : F ields : Pub_static_fields(f_tok)
^
8hc_name; f_namei RField_ref f_ref :

pack_static(c_name; f_name)) fields_name c_name f_name

RPack_static_field_info Desc_comp(c_ref ) : F ields : Pack_static_fields(f_ref )
We could have used RField_ref in each of the four clauses, but give the more speci�c relations when
possible. For the package visible static methods we have no choice but to use the more general relation.

We now de�ne the relations for the �eld information structures:

hhflags; type;_i; f_ref i RInstance_field_info hf_tok; flags
0; f_ref ; type0i

() flagsRField_flags flags
0 ^ typeRType type

0

hhflags; type; valuei; f_ref i RPub_static_field_info hf_tok; flags
0; f_ref ; type0i

() flagsRField_flags flags
0 ^ typeRType type

0

hflags; type; valuei RPack_static_field_info hflags
0; type0i

() flagsRField_flags flags
0 ^ typeRType type

0

(Class) We de�ne RClass. There are a number of equivalences expressing correctness of the construction of
the class component. For the lookup, the signi�cant ones are those between the method tables. These
say that if a method is de�ned in the name format, then it must be de�ned (and equivalent) in the token
format. Since the converse is not required, this means we can copy method tokens from a superclass.
Instead, there is a condition saying that if there is a method token, then there must be a corresponding
signature in some superclass.

If a method is visible in a class, then there must be an entry in the method table, indicating how to �nd
the method information structure in the appropriate method component. For package visible methods
this implies that the method must be in the same package. For public methods, if the two classes are in
the same package, then this entry is an o�set into the method component of this package. Otherwise, the
entry is OxFFFF, indicating that we must use the method token to look in another package.

The class component only contains part of the information contained in the class �les.
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The full de�nition is (writing c_name for cf:Class_name and c_ref for ci:Class_ref):

cf : Class_file RClass ci : Class_info ()8>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

cf:Class_flags RClass_flags ci:Class_flags ^
cf:Super RClass_ref ci:Super ^

8sig 2 cf:methods_item:

public(sig))
9m_tok : public_base � m_tok < public_base+ public_size ^
hc_name; sigi RVirtual_method_ref hc_ref ;m_toki ^ ci:Public_table[m_tok � ci:public_base] =
method_offset(c_ref ;m_tok)
^
package(sig))
9m_tok : package_base � m_tok & 127 < package_base+ package_size ^
hc_name; sigi RVirtual_method_ref hc_ref ;m_toki ^
ci:Package_table[m_tok & 127� ci:Package_base] = method_offset(c_ref ;m_tok)
^
8m_tok 2 ci:Tables:9sig:9c0_name:

hc0_name; sigi RVirtual_method_ref hc_ref ;m_toki ^ c_name � c0_name ^
public(sig))

(same_package(c_name; c0_name) () ci:public_table[m_tok � ci:public_base] 6= OxFFFF)

Finally, we de�ne RPackage. Recall that

[[Package]]name = Class_name! Class_file

[[Package]]tok = CAP_file

We use the notations class_info0(p_tok; c_tok) to indicate the class info for c_tok in the class component
of CAP �le p_tok (see p. 20), and pack_methods(p_name) for the set of Method data extracted from each
class �le; similarly for pack_cps(p_name) and pack_fields(p_name).

pack_cps : Package! Constant_pool

pack_cps(p_name) = �hc_name; ii : p_name(c_name) : Constant_pool_item(i)

pack_methods : Package! Pack_methods

pack_methods(p_name) = �c_name : p_name(c_name) : Methods_item

pack_fields : Package! Fields

pack_fields(p_name) = �c_name : p_name(c_name) : F ields_item

p_name RPackage p_tok ()8>><
>>:

pack_cps(p_name) RConstant_pool p_tok:cp_comp ^
8c_name RClass_ref c_ref : c_name 2 dom(p_name)) p_name(c_name) RClass class_info

0(p_tok; c_ref ) ^
pack_methods(p_name) RPack_methods p_tok:method_comp ^
pack_fields(p_name) RPack_fields hp_tok:desc_comp; p_tok:static_field_compi

The o�set functions link the various relations. We make a global assumption (in fact, local to an environment)
of the existence of:

class_offset; method_offset; static_field_offset
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9 Proof

We �rst prove that the auxiliary functions preserve the appropriate relations.9 Since we have not make the
heap and environment explicit arguments, we need to assume the corresponding entities are related. Note that
this proof is dependent on the speci�c implementations of auxiliary functions and, in particular, the choice of
lookup algorithm used here.

Lemma 9.1 If the heap and environment are related in the two formats, then: for all auxiliary functions
f : � ! �0, given the corresponding preconditions, we have [[f ]]name R�!�0 [[f ]]tok

Proof: We will consider two cases.

(lookup : Class_ref� Method_ref! Class_ref� Bytecode)
For lookup, this is achieved by inducting over the class hierarchy and using the constraints on RClass and
RMethod. Formally, we prove that

8act_name RClass_ref act_ref : 8(dec_name; sig) RMethod_ref (tag; dec_ref ;m_tok):
lookup_name(act_name; (dec_name; sig))RClass_ref�Bytecode lookup_tok(act_ref; (m_tok; dec_ref ))

Induction over classes is possible since the subclass ordering is well-founded.

If the reference is to a virtual method, then:

The functions lookup_name and lookup_tok have similar structures. lookup_name takes one of three
branches and we show that the conditions and the results are equivalent for lookup_tok. Either the
method is de�ned and visible in the actual class, or de�ned and not visible, or unde�ned.

� Suppose the method is de�ned and visible in the actual class, that is, methods_item(sig) is de�ned
and the visibility condition holds.

If the method token is public, then it must be that m_tok � public_base and the o�set is not
0xFFFF.

If the method token is package visible, then it must be greater than the package base, and the
packages must be the same.

In both cases, we return the actual class together with the code at that class.

Now, byRClass we have that there exists a tokenm
0_tok such that hact_name; sigi RVirtual_method_ref

hact_ref;m0_toki.

Using act_name RClass_ref act_ref and (dec_name; sig) RVirtual_method_ref (dec_ref ;m_tok),
and the fact that dec_name and act_name are in the same hierarchy, we deduce that
(act_name; sig) RVirtual_method_ref (act_ref;m_tok). Thus, again by RClass, it must be that
method_offset(act_ref;m_tok) is the entry in the method table computed by the lookup.

Then, by RPack_methods, we get that the corresponding method information structures are related by
RMethod_info, and so in particular, the bytecodes are equivalent.

� Suppose the method is de�ned but not visible. This must be for a package token then, and we have
method_tok � package_base and the same_package condition is false.

In both formats then we look at the superclass, which is the same due to the de�nition of RClass, and
because the environments and actual class references are related. Equality follows from the inductive
hypothesis at the superclass.

� � If the function is not de�ned at the actual class in either format, then both algorithms look in the
superclass and we appeal to the inductive hypothesis at the superclass. By the second constraint
on RVirtual_method_ref, this must be because the token is less than the base.

� In the case where the two functions di�er, that is, the method is unde�ned in the name format,
but de�ned (and visible) in the token format, this must be because the method was copied from a
superclass (and the token is greater than the base). We can then use the inductive hypothesis at
this superclass, as in the previous case. This tells us that the results are equal at the superclass.
Thus, by de�nition of lookup_name and the overriding constraint on RVirtual_method_ref, we have
that the results are equal in the current class.

9Often this is taken as part of the de�nition of a logical relation.
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(constant_pool : Class_ref! Constant_pool)
This follows directly from the assumption that the environments are related in the two formats and
places restrictions on the de�nitions of RCP_index, RSM_index and RCP_info. Commutation ensures that the
constant pools are joined together without loss of data.

In order to use the operational semantics with the logical relations approach it is convenient to view the
operational semantics as giving an interpretation. We de�ne [[code]](henv; heap; op_stack; loc_vars;m_ref i)
as the resulting state from the (unique) transition from hcode; op_stack; loc_varsi with environment env and
heap heap.

Thus we regard interpreted bytecode as having the type

State! Bytecode� State

where
State = Global_state� Local_state

Global_state = Environment� Heap

Local_state = Operand_stack� Local_variables� Class_ref

Now, the following fact is trivial to show: if RB = idB for all basic observable types, then R� = id� for all
observable �. In combination with the following theorem, then, this says that if a transformation satis�es certain
constraints (expressed by saying that it is contained in R) then it is correct, in the sense that no di�erence can
be observed in the two semantics. In particular, we can observe the operand stack (of observable type Word�)
and the local variables (of observable type Nat! Word) so these are identical under the two formats.

Theorem 9.2 If

1. envname REnvironment envtok,

2. heapname RHeap heaptok,

3. ls RLocal_state ls
0, and

4. code RBytecode code
0

then
[[code]]name(envname; heapname; ls) RBytecode�State [[code0]]tok(envtok; heaptok; ls

0)

Proof: It is straightforward to show that the representation independence of instructions follows from that of
the auxiliary functions. Most of the work was in formulating the operational semantics so as to be independent
of the underlying format.

We take invokevirtual as an example. We use subscripts to distinguish the interpretations in the two
models. Suppose heapname RHeap heaptok, envname REnvironment envtok, mname RMethod mtok. Then, by induc-
tion on constant_pool, we have dec_mrefname RMethod_ref dec_mref tok. By the assumption on heap we have
act_cref name RClass_ref act_cref tok. Thus, by induction on lookup, we get thatm_classname RClass_ref m_classtok
and m_codename RBytecode m_codetok. Since the heap and environment do not change, we can conclude that

invokevirtual is representation independent. The cases of the other instructions are proven similarly.

10 Conclusion

We have formalised the virtual machines and �le formats for Java and Java Card, and the optimisation as a
relation between the two. Correctness of this optimisation was expressed in terms of observable equivalence of
the operational semantics, and this was deduced from the constraints that de�ne the optimisation. Although the
framework we have presented is quite general, the proof is speci�c to the instantiations of auxiliary functions
we chose. It could be argued, in particular, that we might have proven the equivalence of two incorrect
implementations of lookup. The remedy for this would be to specify the functions themselves, and independently
prove their correctness.

It might seem that there is a circularity in the proof since the various relations make use of the environments,
the equivalence of which is tantamount to the correctness we seek to prove. However, although the relations are
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de�ned using the environment, they do not use the relation between the environments. Moreover, the equivalence
of environments does not assume the commutation of auxiliary functions but, rather, the equivalence of data
that conforms to the speci�cation.

There are a number of points, however, which are not entirely clear at this stage. We assumed functions to
convert external tokens into internal o�sets but it is not clear how they should be implemented. In this report
we use the descriptor component to resolve tokens, but it may be that the export component should be used.

Also, it is not clear how array references are treated in the CAP �le. In the constant pool in class �le format,
an array reference is a special form of class name, but this does not seem to be the case for class tokens, so have
assumed a primitive function to convert an array as class name, into an array type.

For the semantics of the new instruction, we used a function instance_fields to compute the default values
for the object �elds. This requires the types of the �elds, which are given in the descriptor component. Perhaps,
though, it would su�ce to use the declared_instance_size item in the corresponding class information
structure.

Another unclear point is where the values of static �elds are stored. We have assumed that they are stored
in the �eld information structures of the �elds item (in the class �les) and the static �eld component (in the
CAP �les). This point is treated di�erently by [Ber97] and [BS98], and seemingly not considered by [Pus98].

The converter should produce an export �le [Sun99] along with the CAP �le but the details are not clear and
we have not considered this. Finally, interface method references do not seem to appear from Draft 2 onwards
of the JCVM 2.1 speci�cation, but we have retained them here.

In addition to these problems, we have made a number of simpli�cations which could be relaxed. First of all,
the proof should be extended to account for the rest of the transformation, accounting for interfaces, exceptions,
and so on. It would also be easy to incorporate AID's and so make package tokens internal. Another extension
would be to incorporate the export �les and descriptor component. We found it more convenient to formalise
various structures as functions where, in reality, they are actually laid out as tables. We could envisage another
transformation pass where the functions are `�attened' into tables.

We have used a simple de�nition of RBytecode here, which just accounts for the changing indexes into constant
pools (as well as method references in con�gurations). We have not considered inlining or the specialisation
of instructions, however. We expressed equivalence in terms of an identity at observable types but, more
realistically, we should account for the di�erence in word size. This has been considered in [LR98]. Although it
seems that `conversion' and `optimisation', to borrow their terminology, are orthogonal, it would, nevertheless,
be interesting to extend our formalisation to include these aspects. Although the specialisation of instructions
could be handled by our technique (suitably combined with a type analysis), the extension is not clear for the
more non-local optimisations.

We emphasised that the particular form of operational semantics used here is orthogonal to the rest of the
proof. This version su�ces for the instructions considered here, but could easily be changed (along with the
de�nition of RBytecode).

These de�nitions have been formalised in Coq, and the lemmas veri�ed [Seg99]. The discipline this imposed
on the work presented here was very helpful in revealing errors. Even just getting the de�nitions to type-check
uncovered many errors. It is worth re�ecting on the fact that Sun presents their speci�cation as a formal
de�nition of Java Card, which we have `formalised' here, and then used as the basis of a formalisation in Coq!

We take the complexity of the proofs (in Coq) as evidence for the merit in separating the correctness of a
particular algorithm from the correctness of the speci�cation. In fact, the operational semantics, correctness of
the speci�cation, and development of the algorithm are all largely independent of each other.

As mentioned in the introduction, there are two main steps to showing correctness:

1. Give an abstract characterisation of all possible transformations and show that the abstract properties
guarantee correctness.

2. Show that an algorithm implementing such a transformation exists.

We are currently working on a formal development of a tokenisation algorithm using Coq's program extraction
mechanism together with constraint-solving tactics. The development is orthogonal to the proofs here and, in
particular, independent of the formalisation of the bytecode semantics.

One detail that is important for the development of the algorithm is the domains of the various functions
and relations. We have not been too precise about the domains of the partial functions, and have used a notion
of relational bijection accordingly. In fact, it su�ces to think of the relations as being between all names and
an in�nite set of tokens but, in reality, we should use the actual names.
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One signi�cant improvement that could be made to the formalisation would be to use dependent types.
This would o�er a number of advantages. For example, if CP_index depended on a class reference, then we
could avoid the explicit labelling of this. This would require an extension of the de�nition of logical relations,
however.

In general, there are a number of changes which could be envisaged for the extraction. However, it was
decided to `freeze' the formalisation more or less in the form presented here so as to have a relatively stable
version for the formalisation in Coq [Seg99].
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